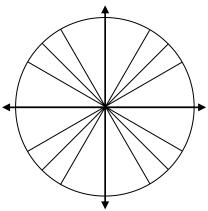
Integration and Trig Functions

- 1.
- a) <u>Without</u> using your graphing calculator, book, notes, or any assignments, carefully sketch and label the trig function $f(x) = \cos x$, $[0, \pi]$, where $x = \theta$ radians. (Remember: In the Unit Circle, $\cos \theta$ is the x-coordinate.)



b) Use partitions $P = \left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi\right\}$ and the **midpoint Riemann Sum** to approximate the **Area** between the

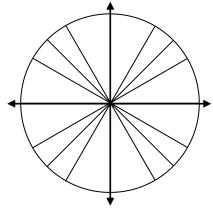
graph of the function and the x-axis. Sketch the rectangles on the graph of $f(x) = \cos x$, $[0, \pi]$.

(Use a calculator to find the cosine values and to find the sum. Answer to the nearest hundredth.)

c) Next, find the Area by integration:
$$\int_0^{\pi} (\cos x) dx$$

d) Now, do the integration by breaking it up into 2 parts: $\int_{0}^{\frac{\pi}{2}} (\cos x) dx + \int_{\frac{\pi}{2}}^{\pi} (\cos x) dx$ What do you notice when it's broken up?

e) With the constant *C* equal to 0, sketch and label the graph of *F(x)*, the anti-derivative of $f(x) = \cos x$, $[0, \pi]$ where $x = \theta$ radians. *F(x)* = _____



f) Using F(x), find the *average slope* m_{av} between the points at x = 0 and $x = \frac{\pi}{2}$. (Answer as complex fraction.) How much did the value of F(x) increase or decrease in the interval from 0 radians to $\frac{\pi}{2}$ radians?

Using *F***(x)**, find the *average slope* m_{av} between the points at $x = \frac{\pi}{2}$ and $x = \pi$. (Answer as complex fraction.) How much did the value of F(x) increase or decrease in the interval from $\frac{\pi}{2}$ radians to π radians?

g) Using f(x), find the average function-value, f_{av} , of $f(x) = \cos x$, $\left[0, \frac{\pi}{2}\right]$. (Exact answer & to nearest hundredth.) Then, find the product of this f_{av} and $\frac{\pi}{2}$.

Using f(x), find the average function-value, f_{av} , of $f(x) = \cos x$, $\left[\frac{\pi}{2}, \pi\right]$. (Exact answer & to nearest hundredth.) Then, find the product of this f_{av} and $\frac{\pi}{2}$.